CT SCANNER PERFORMANCE EVALUATION

GREEN LIGHT IMAGING, LLC

Medical Mobile Diagnostics 8348 Rosemead Blvd Pico Rivera, CA 90660

(562)222-1321

CDPH Facility ID: 78006

CT Trailer #1

GE BrightSpeed S Gantry S/N: 11905YC7

Survey Date: April 21, 2023

Khachig A. Jerjian, Ph.D.

ABR Certified in Diagnostic Radiological Physics California MQA-0061

(949)683-5215

Site: GREEN LIGHT IMAGING, LLC Report Date: April 21, 2023 8348 Rosemead Blvd **Survey Date:** April 21, 2023 Pico Rivera, CA 90660 Model: BrihtSpeed S X-Ray Unit Manufacturer: General Electric Medical Systems CT Trailer #1 **Date Manufactured:** August 2007 Room ID: **Medical Physicist:** Khachig A. Jerjian, Ph.D. Signature: PASS/FAIL/NA **Review of Clinical CT Protocols PASS** 1. 2. **PASS** Scout Prescription Accuracy Evaluation 3. Laser Light Alignment Accuracy Evaluation **PASS** 4. **Table Travel Accuracy Evaluation PASS** 5. Radiation Beam Width Accuracy Evaluation **PASS PASS** 6. Slice Thickness Accuracy Evaluation 7. **High Contrast Spatial Resolution Evaluation PASS** 8. Low Contrast Performance Evaluation **PASS** 9. **CT Number Accuracy Evaluation PASS** a. CT Number Accuracy and Linearity Evaluation **PASS** b. CT Number Contrast Scale Evaluation c. CT Number Dependence on Slice Thickness Evaluation **PASS** d. CT Number Dependence on kVp Evaluation **PASS** e. CT Number and Image Uniformity Evaluation **PASS** 10. Artifact Evaluation **PASS PASS** 11. **Dosimetry Evaluation** 12. Acquisition Display Device Evaluation **PASS** 13. **Radiation Protection Evaluation PASS** a. Visual Inspection b. Audible/Visual Warning Signs **PASS** c. Posting Requirements **PASS** 14. Technologist Quality Control Program Evaluation **PASS**

CT SCANNER PERFORMANCE EVALUATION SUMMARY

MEDICAL PHYSICS RECOMMENDATIONS & COMMENTS

- CT scanner performance evaluation was found to be adequate. Performance evaluation test results were
 within ACR recommended action limits. Deviations in the indicated and measured CTDI_{vol} dose values were
 within an acceptable range of ± 20%.
- 2. Review of doses from representative clinical protocols were found to be adequate with typical doses well within ACR recommended Reference Dose Levels for both head and body protocols.
- 3. Most adult Abdomen/Pelvis scans are running at maximum mA of 300 with a pitch factor 1.75 and CTDI_{vol} value of 12.33 mGy. Recommend using a pitch factor of 1.375 instead of 1.75 for routine Abdomen/Pelvis protocols.
- 4. Dosimetry spreadsheets and phantom images are attached for further details.
- 5. Detailed accounts of this performance evaluation may be obtained by contacting KJ Jerjian, Ph.D., at (949)683-5215 or by e-mail at kjmedicalphysics@gmail.com.

Date: April 21, 2023

Khachig A. Jerjian, Ph.D.

Medical Physicist
ABR Certified in Diagnostic Radiological Physics

Voice: (949)683-5215

e-mail: kjmedicalphysics@gmail.com

1. REVIEW OF ROUTINE CLINICAL CT PROTOCOLS

This CT scanner performance evaluation was performed using the ACR CT Accreditation Program Phantom and routine clinical head and abdomen protocols used at this facility. Test procedures were consistent with ACR CT Accreditation Program guidelines.

Table 1. Routine Protocols

For this section, techniques used on an average patient	Adult	Adult	Pediatric	Pediatric
or average technique calculated from several patient	Head	Abdomen	Head	Abdomen
images is recorded.			(1 Year Old)	(5 Year Old)
kVp	120	120	120	120
mA	230	300	120	85
Time per Rotation (sec)	1.0	0.8	1.0	0.8
System Calculated mAs	230	240	120	100
Effective mAs (or mAs per slice) as displayed	245	137	120	73
Scan FOV (cm)	Head (25 cm)	Large (50 cm)	Ped (25 cm)	Large (50 cm)
Display FOV (cm)	25 cm	50 cm	25 cm	28 cm
Reconstruction Algorithm	Standard	Std Full	Std Full	Std Plus
Axial (A) or Helical (H) Scan	Н	Н	Α	Н
Acquisition Slice Thickness Z-Axis Collimation (T in				
mm)	0.625	1.25	1.25	1.25
Number of Slices per Tube Rotation - # of Data				
Channels Used (N)	16	16	8	16
Table Increment (mm) (axial scans) or Table Speed				
(mm/rot)(helical scans) (I)	9.37	35.0	10.0	27.5
IEC definition of Pitch for this protocol				
(Pitch = I / N * T) (calculated by the System)	0.937	1.750	1.00	1.375
Reconstructed Scan Width (mm)	5.00	5.00	5.00	5.00
Reconstructed Scan Interval (mm)	5.00	5.00	5.00	5.00
Dose Reduction Technique(s) used in routine	Auto mA	Auto mA	Auto mA	Auto mA 50-
patient scanning for these protocols (Note: The	100-200 mA	100-300 mA	50-200 mA	260 mA Noise
ACR and CTDI phantoms are NOT scanned with	Noise Index	Noise Index	Noise Index	Index 11.57
dose reduction options.)	2.69	11.57	2.8	muex 11.37
Indicated CTDIvol (mGy)	54.99 mGy	12.33 mGy	24.10 mGy	4.40 mGy
Reference Dose Phantom Size	Head 16	Body 32	Head 16	Body 32

The facility clinical protocol acquisition and reconstruction parameters were reviewed for specific requirements of the diagnostic imaging task, adequate image quality and dose. The above listed protocols were found to be adequate. The High Resolution Chest protocol was also found to be adequate. Brain Perfusion protocols were not reviewed. Brain Perfusions are not performed on this scanner.

2. SCOUT PRESCRIPTION ACCURACY EVALUATION

Phantom: ACR CT Accreditation Phantom

Technique: 120 kVp, 280 mA, 1.0 sec Rotation Speed, 280 mAs, Axial Mode, 2x0.625 mm Detector

Configuration, 1.25 mm Slice Thickness, BonePlus Reconstruction Algorithm, Large SFOV, 21 cm

DFOV, 512x512 Image Matrix.

Following proper position and leveling of the phantom on the scan table at the center of the gantry and acquisition of scout images, 1.25 mm thick axial images were prescribed at the center of modules 1 and 4 of the ACR CT Accreditation phantom at table landmark position of +0 mm and at table location 120 mm superior to the landmark position. Slice localization from scout prescription accuracy was evaluated using images of embedded 1 mm diameter BBs at the surface of modules 1 and 4 of the ACR phantom.

Detector Configuration	guration Nominal Position Actual Location		Deviation (mm)
1i 2x0.625 mm	Landmark Location	0.0 mm	0.0 mm
	Superior +120 mm	+120.0 mm	0.0 mm

Conclusion: Slice localization from scanned projection radiographs/scout was found to be adequate, accurate

to within ± 1 mm.

3. LASER LIGHT ALIGNMENT ACCURACY EVALUATION

Detector Configuration	Nominal Position	Actual Location	Deviation (mm)
1i 2x0.625 mm	Landmark Location	Landmark Location 0.0 mm	
	Azimuth 0° Laser	Left/Right	0.0 mm
	Azimuth 90° & 270°	Vertical	0.0 mm

• Maximum discrepancy between the internal and external axial laser lights and the plane of radiation field was determined to be less than ± 1 mm. The sagittal and coronal laser light alignment accuracy was also found to be adequate, within ± 2 mm limits.

Conclusion: Bed positioning accuracy and congruence of the laser light beam localizer with the imaging plane

was found to be adequate.

4. TABLE TRAVEL ACCURACY EVALUATION

Detector Configuration	Nominal Position	Actual Location	Deviation (mm)
1i 2x0.625 mm	Landmark Location	0.0 mm	0.0 mm
	Superior +120 mm	+120.0 mm	0.0 mm

• Maximum discrepancy in bed repositioning was determined to be less than ± 1 mm.

Conclusion: CT scanner table motion was accurate, reproducible and consistent with digital system indicators.

Bed travel and indexing/incrementation accuracy was found to be adequate and reproducible to

within ±1 mm.

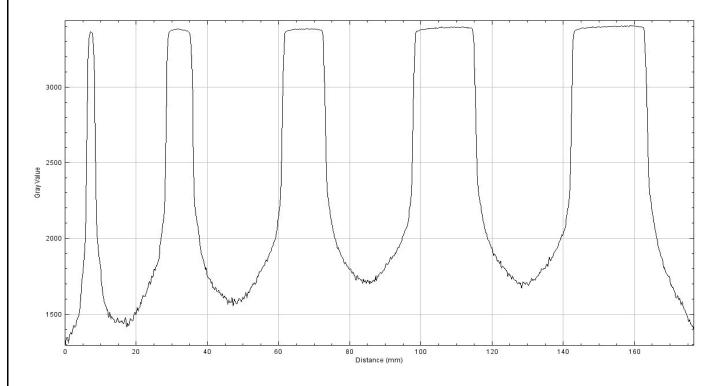
5. BEAM WIDTH ACCURACY EVALUATION

Phantom: CR Plate

Technique: 80 kVp, 10 mA, 0.8 sec Rotation Speed, 8 mAs, Axial Mode, Detector Configuration and Slice

Thicknesses as indicated, Standard Reconstruction Algorithm, Large SFOV, 40 cm DFOV, 512x512

Image Matrix.


A CR plate was positioned at the iso-center and axial images were acquired at selected location. Beam widths were measured at the FWHM of the slice profiles.

Detector	Prescribed Beam	Measured Beam	Difference	STATUS
Configuration	Width	Width		(Pass/Fail Criteria)
1i 2x0.625 mm	1.25 mm	2.7 mm	1.5 mm	PASS (≤ 3.0 mm)
1i 4x1.25 mm	5.0 mm	7.9 mm	2.9 mm	PASS (≤ 3.0 mm)
16i 16x0.625 mm	10 mm	12.3 mm	2.3 mm	PASS (≤ 3.0 mm)
4i 4x3.75 mm	15 mm	17.9 mm	2.9 mm	PASS (≤ 4.5 mm)
16i 16x1.25 mm	20 mm	21.7 mm	1.7 mm	PASS (≤ 6.0 mm)

Conclusion: Measured beam widths were found to be in good agreement with indicated beam widths.

Measured beam widths have to be within the larger of ± 3 mm or 30% of prescribed total

nominal collimated beam width.

6. SLICE THICKNESS ACCURACY EVALUATION

Phantom: ACR CT Accreditation Phantom Module 1

Technique: 120 kVp, 300 mA, 0.8 sec Rotation Speed, 240 mAs, Axial Mode, Detector Configuration and Slice

Thicknesses as indicated, Standard Reconstruction Algorithm, Large SFOV, 21 cm DFOV, 512x512

Image Matrix.

Axial images were acquired at the center of Module 1 of the ACR CT Accreditation phantom. Slice widths were assessed by counting the visible wires on the two ramps containing wires arranged in 0.5 mm z-axis increments.

Detector Configuration	Prescribed Slice	Measured Slice	Difference
(Prescribed Beam Width NxT)	Width	Width	
16i 16x0.625 mm	0.625 mm	1.0 mm	< 0.5 mm
16i 16x1.25 mm	1.25 mm	1.5 mm	< 0.5 mm
8i 8x2.5 mm	2.50 mm	2.5 mm	0.0 mm
4i 4x3.75 mm	3.75 mm	4.0 mm	< 0.5 mm
4i 16x1.25 mm	5.0 mm	5.0 mm	0.0 mm
2i 4x3.75 mm	7.5 mm	7.5 mm	0.0 mm

Conclusion: Observed slice widths were found to be in good agreement with the nominal slice widths. Slice

widths must be within \pm 1.5 mm of the prescribed slice thickness.

7. HIGH CONTRAST SPATIAL RESOLUTION EVALUATION

Phantom: ACR CT Accreditation Phantom

Technique: Routine Adult Head, Adult Abdomen and HR Chest Protocols

The high contrast resolution insert, Module 4 of the ACR Phantom, contains eight bar patterns representing spatial frequencies corresponding to 4, 5, 6, 7, 8, 9, 10 and 12 lp/cm, respectively.

Protocol	High Contrast Spatial Resolution
Routine Adult Brain Protocol	7 lp/cm
Routine Adult Abdomen protocol	7 lp/cm
HR Chest Protocol	10 lp/cm

Conclusion: The limiting high contrast spatial resolution is adequate. The ACR Pass/Fail criteria are 6 lp/cm for

standard resolution head and body protocols and 8 lp/cm for the high resolution chest protocol.

8 (a). CONTRAST TO NOISE EVALUATION

Phantom: ACR CT Accreditation Phantom Module 2 **Technique:** Routine Head and Abdomen Protocols

The low contrast resolution insert, Module 2 of the ACR phantom, contains five different size rod sets with diameters equal to 6 mm, 5 mm, 4 mm, 3 mm, and 2 mm, respectively. The rod sets are considered to be resolved if all four rods of the same size can be clearly visualized.

Contrast to Noise (CNR) Evaluation:

The low contrast resolution insert, Module 2 of the ACR Phantom, was evaluated using a ROI of about 100 mm². Image noise was represented by the ROI standard deviation of the background area.

Protocol	Rod Insert ROI	Background ROI	Background ROI Std.	CNR
	(H.U.)	(H.U.)	Dev.	
Adult Brain	95.7	89.3	4.5	1.4
Adult Abdomen	96.4	90.3	5.5	1.1
Pediatric Brain	95.7	90.4	7.6	0.7
Pediatric Abd	96.2	90.7	9.0	0.6

Conclusion: Routine Brain and Body protocol contrast to noise ratios were found to be adequate. The CNR

must be greater than 1.0 for the adult Brain and adult Abdomen protocols. CNR must be greater

than 0.7 for Pediatric Brain and greater than 0.4 for Pediatric Abdomen protocol.

8 (b). LOW CONTRAST RESOLUTION EVALUATION

Phantom: ACR CT Accreditation Phantom Module 2

Technique: Routine Adult Head and Adult Abdomen Protocols

The low contrast resolution insert, Module 2 of the ACR phantom, contains five different size rod sets with diameters equal to 6 mm, 5 mm, 4 mm, 3 mm, and 2 mm, respectively. The rod sets are considered to be resolved if all four rods of the same size can be clearly visualized.

Protocol	Contrast Level	CTDI _{vol} (mGy)	Low Contrast
			Resolution
Adult Brain	0.6%	54.99 mGy	4 mm
Adult Abdomen	0.6%	12.33 mGy	4 mm
Pediatric Brain (1 Year old)	0.5%	24.10 mGy	5 mm
Pediatric Abdomen (5 Year old)	0.6%	4.40 mGy	6 mm

Conclusion: The ACR Pass/Fail criteria indicate a resolution of 6 mm diameter rods with both adult abdomen

and adult brain protocols. The scanner Low Contrast Resolution is estimated to better than 4.0

mm @ 0.6 % contrast at a dose of 55 mGy CTDI_{vol}.

9 (a). CT NUMBER ACCURACY AND LINEARITY EVALUATION

Phantom: ACR CT Accreditation Phantom Module 1 **Technique:** Routine Brain and Abdomen Protocols

Module 1 of the ACR phantom is used to assess CT number accuracy and linearity. There are five cylinders of different materials including a bone mimicking material ("Bone"), polyethylene, water equivalent material, acrylic and air. Each cylinder, except the water cylinder, has a diameter of 25 mm and a depth of 4 cm. The water cylinder has a diameter of 50 mm and a depth of 4 cm. ROI measurements were performed in each insert with an ROI area of $\sim 200 \text{ mm}^2$.

Technique: Routine Adult Abdomen Protocol

ACR Phantom Insert	Mean CT Number (HU)	Acceptable CT Number Range		
Polyethylene	-88	-107 HU	to	-84 HU
Water Equivalent	5	-7 HU	to	7 HU
Acrylic	123	110 HU	to	135 HU
Bone	900	850 HU	to	970 HU
Air	-968	-1005 HU	to	-970 HU

Technique: Routine Adult Brain and Pediatric Brain and Abdomen Protocols

PROTOCOL	Adult Brain (HU)	Pediatric Brain	Pediatric Abdomen
Polyethylene Insert CT Number (HU)	-93	-91	-87
Water Equivalent Insert CT Number (HU)	3	3	6
Acrylic Insert CT Number (HU)	122	122	122
Bone Insert CT Number (HU)	974	972	902
Air CT Number (HU)	-982	-979	-966

Conclusion: CT number calibration accuracy is adequate. Mean CT numbers of tested inserts were mostly

within ACR recommended ranges.

9 (b). CT NUMBER CONTRAST SCALE EVALUATION

Phantom: ACR CT Accreditation Phantom Module 1

Technique: Routine Adult Brain and Adult Abdomen Protocols

CT number contrast scale was evaluated using the Water and Acrylic inserts in Module 1 of the ACR Phantom. Acrylic/Water CT number contrast scale was represented by the difference in Acrylic and Water CT numbers.

PROTOCOL	Acrylic CT Number	Water CT Number	Contrast Scale	
Routine Adult Brain protocol	123	5	118	HU
Routine Adult Abdomen protocol	122	3	119	HU

Conclusion: Contrast scale is adequate. The acrylic and water CT number difference should be within 120 ± 12

HU.

9 (c). CT NUMBER DEPENDENCE ON SLICE THICKNESS EVALUATION

Phantom: ACR CT Accreditation Phantom Module 1

Technique: Adult Abdomen equivalent axial protocol at 120 kVp, 300 mA, 0.8 sec Rotation Time, Large SFOV,

21 cm DFOV, Standard Body Algorithm, slice thicknesses as indicated and ROI areas of ~ 200

mm².

Slice Thickness	Mean CT Number (HU)	Acceptable CT Number Range		
0.625 mm	4	-7 HU	to	7 HU
1.25 mm	4	-7 HU	to	7 HU
2.5 mm	5	-7 HU	to	7 HU
3.75 mm	5	-7 HU	to	7 HU
5.0 mm	4	-7 HU	to	7 HU
7.5 mm	5	-7 HU	to	7 HU

Conclusion: CT number dependence on slice thickness is adequate. Mean CT numbers should be within the

ACR recommended range of \pm 7 HU, and preferably within \pm 5 HU.

9 (d). CT NUMBER DEPENDENCE ON kVp EVALUATION

Phantom: ACR CT Accreditation Phantom Module 1

Technique: Routine Adult Abdomen equivalent protocol in axial mode 5.0 mm Slice Thickness, 300 mA and

kVp values as indicated with ROI areas of ~ 200 mm².

kVp	Mean CT Number (HU)	Acceptable CT Number Range		
80	4	-7 HU	to	7 HU
100	4	-7 HU	to	7 HU
120	4	-7 HU	to	7 HU
140	4	-7 HU	to	7 HU

Conclusion: CT number dependence on kVp is adequate. Mean CT numbers should be within the ACR

recommended range of \pm 7 HU, and preferably within \pm 5 HU.

9 (e). IMAGE UNIFORMITY EVALUATION

Phantom: ACR CT Accreditation Phantom Module 3

Technique: Routine Adult Abdomen Protocol

The uniformity section insert, Module 3 of the ACR phantom, contains Teflon beads embedded in a uniform water equivalent background. ROI measurements were performed at the center and periphery of the phantom. Area of ROI used was $\sim 400 \text{ mm}^2$. Image spatial uniformity was depicted by the edge-to-center mean CT number differences.

ACR Phantom	Location	Mean ROI CT	ROI Standard	Difference Center to
		Number (H.U.)	Deviation (H.U.)	Edge ROI (H.U.)
ROI ~ 400 mm ²	Center	0.0	6.1	
	3 O'Clock	3.0		3.0
	6 O'Clock	3.9		3.9
	9 O'Clock	2.7		2.7
	12 O'Clock	2.5		2.5

Conclusion:

Mean CT number and image spatial uniformity is adequate. The measured mean CT numbers should be in the range of 0 ± 7 Hounsfield Units (HU) and preferably within 0 ± 5 HU. Image spatial uniformity, depicted by the edge-to-center mean CT number differences is also within recommended limits. Edge-to-center mean CT number differences must be less than 5 HU for all four edge positions.

10. ARTIFACT EVALUATION

Phantom: ACR CT Accreditation and CTDI Dose Phantoms

Technique: Routine Adult Brain and Adult Abdomen Protocols

With all graphics turned off and with reduced room lighting, images were viewed for artifacts such as rings or streaks.

Conclusion: No significant ring, streak or any other equipment related artifacts were noted.

11. CT DOSIMETRY EVALUATION

A. CT SCANNER INDICATED COMPUTED TOMOGRAPHY DOSE INDEX (CTDI_{VOL}) EVALUATION

Phantom: 16 cm CTDI Acrylic Head and 32 cm CTDI Acrylic Body Phantom

Dosimeter Used: RaySafe X2 Base Unit S/N 297311

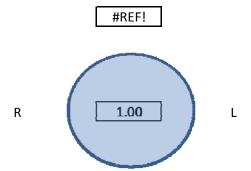
Ion Chamber: RaySafe X2 CT Sensor S/N 293385 Calibration Date 6/20/2022

Technique: Axial Brain and Abdomen Protocols

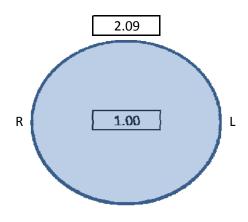
Weighted CTDI_{w.100} Dose Measurements using CTDI Dose Phantoms:

Scan Protocols	kVp	mA	Scan Time	SFOV	Scan Type	Indicated	Measured	Percent
			(sec)	(cm)		CTDI _{vol}	CTDI _w	Difference
						(mGy)	(mGy)	
Adult Brain	120	230	1.0	Head	Axial	51.55	45.45	-12%
(16x0.625 mm)				(25 cm)		(Head16)		
Adult Abdomen	120	300	0.8	Large	Axial	21.58	19.02	-12%
(16x1.25 mm)				(50 cm)		(Body32)		
Pediatric Brain	120	185	1.0	Ped Head	Axial	40.47	35.01	-14%
(8x1.25 mm)	120	103	1.0	(25 cm)	7 Midi	(Head16)	33.01	1470
Pediatric Abdomen	120	85	0.8	Large	Axial	6.05	5.31	-12%
(16x1.25 mm)				(50 cm)		(Body 32)		_,,

CONCLUSION: Measured CTDI_w values were found to be consistent with indicated CTDI_{vol} values.


Percent differences were within an acceptable range of ± 20.0%.

RADIATION DOSE UNIFORMITY*


*Note: Phantom surface dose factors normalized to the value at the center location

Technique: 120 kVp Adult Techniques as indicated in table above

16 cm CTDI Head Dose Phantom

32 cm CTDI Body Dose Phantom

11. CT DOSIMETRY EVALUATION (Continued)

B. PATIENT DOSE EVALUATION FOR REPRESENTATIVE CT EXAMINATIONS

Phantom: 16 cm CTDI Acrylic Head and 32 cm CTDI Acrylic Body Phantom

Technique: Routine Brain and Abdomen Protocols

Correspondence of Measured and Indicated CTDI_{vol} Doses for Select Clinical Protocols:

Protocols	Measured CTDI _{vol}	Indicated CTDI _{vol}	Reference CTDI	Percent
	(mGy)	(mGy)	Dose Phantom	Difference
Adult Brain	48.50 mGy	54.99 mGy	Head 16 cm	-12%
Adult Abdomen	10.87 mGy	12.33 mGy	Body 32 cm	-12%
Pediatric Brain	25.93 mGy	29.98 mGy	Head 16 cm	-14%
Pediatric Abdomen*	3.87 mGy	4.40 mGy	Body 32 cm	-12%

CONCLUSION: Measured CTDI_{vol} dose values were found to be consistent with indicated CTDI_{vol} values.

Percent differences were within an acceptable range of ± 20%.

C. PATIENT DOSE EVALUATION FOR REPRESENTATIVE CT EXAMINATIONS

Effective Dose Estimates for Select Clinical Protocols

Protocols	Measured CTDI _{vol} (mGy)	Scan Length	Dose Length Product DLP (mGy.cm)	Effective Dose (mSv)
Adult Brain	48.50 mGy	17.5 cm	849 mGy.cm	1.8 mSv
Adult Abdomen (SSDE)	11.14 mGy	25.0 cm	278 mGy.cm	4.2 mSv
Pediatric Brain	25.93 mGy	12.0 cm	311 mGy.cm	2.1 mSv
Ped Abdomen (SSDE)*	7.26 mGy	15.0 cm	109 mGy.cm	2.2 mSv

CONCLUSION: CTDI_{vol} dose values and Effective Dose estimates are well within the ACR recommended

limits. Attached, please find dose calculator spreadsheets for further details. Measured CTDI_{vol} values should be less than the ACR Pass/Fail Criteria tabulated below, and preferably

less than the ACR Reference Dose Levels.

ACR CTDI_{vol} Pass/Fail Criteria and CT Dose Reference Levels

CT Examination	ACR Pass/Fail Criteria CTDI _{vol} (mGy)	ACR Reference Levels CTDI _{vol} (mGy)
Adult Head	80 mGy	75 mGy
Adult Abdomen	30 mGy	25 mGy
Pediatric Head (1 year old)	40 mGy	35 mGy
Pediatric Abdomen (40-50 lb) - 16 cm Diameter CTDI Phantom	20 mGy	15 mGy
Pediatric Abdomen (40-50 lb) - 32 cm Diameter CTDI Phantom	10 mGy	7.5 mGy

^{*}Note: Pediatric Abdomen dose measured using the Large (32 cm Diameter) CTDI Phantom.

12 (a). ACQUISITION DISPLAY DEVICE EVALUATION

Luminance Meter Make/Model: RaySafe X2 Light Sensor

Acquisition display devices were evaluated using a standard SMPTE test pattern:

- 1. The 5% and the 95% square contrast patterns were properly resolved and visualized.
- 2. Each gray-level step from 0% to 100% was uniform and distinct from the adjacent step.
- 3. The borders and lines of the SMPTE pattern were straight.
- 4. No spatial distortions or misalignments were noted in the grids across the screen.
- 5. Alphanumeric characters looked sharp and focused.
- 6. The high contrast line-pair resolution patterns in the center and corners of the display area were linear, properly resolved and adequately visualized without any magnification.
- 7. No streaking was noted in and around the white and black rectangular patterns.

The overall appearance of the SMPTE pattern was found to be adequate.

The soft copy display monitor resolution and spatial accuracy was found to be adequate.

No significant distortions or any kind of non-linearities were noted in any of the target patterns.

Monitor	Minimum Luminance	Maximum Luminance	% Luminance
NEC MultiSync LCD 1980SXi	(Black Level)	(White Level)	Non-Uniformity
Acquisition Workstation Display	0.3 cd/m ²	146 cd/m ²	13%

The minimum luminance (Black Level) should be less than 1.2 cd/m².

The maximum luminance (White Level) should be greater than or equal 100 ${\rm cd/m}^2$ for diagnostic workstations.

The display luminance uniformity is considered adequate if percent luminance non-uniformity is less than 30%.

CONCLUSION: The display monitor minimum & maximum luminances and uniformity were found to be adequate.

12 (b). SPATIAL DISTORTION EVALUATION

Phantom: ACR CT Accreditation Phantom Module 3

Technique: Routine Adult Abdomen Protocol

Spatial distortion and distance measurement accuracy was evaluated by measuring the known dimensions of the ACR phantom and set distance between the Teflon BB's in Module 3.

A. Distance Gauge Check:

Orientation of BB's	Actual Distance Between BB's	Scanner Measured Distance	Percent Difference
45°	10.0 cm	10.0 cm	0.0%

B. Aspect Ratio of Video Monitor and Imager (if available):

ACR Phantom	Aspect Ratio
Ratio of Horizontal to Vertical Dimensions of Circular Phantom Object	1.00
Ratio of Horizontal to Vertical Dimensions of Object on the Monitor	1.00
Ratio of Horizontal to Vertical Dimensions of Object on Film	N/A

CONCLUSION: The scanner distance measurement accuracy is adequate. There are no significant spatial

distortion of the image on the monitors.

13. RADIATION SAFETY EVALUATION

A. Visual Inspection

A visual safety inspection of the CT Trailer and surroundings was conducted. No unsafe conditions were noted.

B. Audible and Visual Warning Signs

System audible and visual warning signs are functional and performing adequately. Dose Notification and Dose Alert features are activated and functioning properly.

C. Posting Requirements

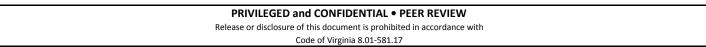
CT scanner room was appropriately posted with a "Caution X-Ray" warning sign.

14. TECHNOLOGIST QUALITY CONTROL PROGRAM

A. Technologist QC program is well established. QC procedures are being properly performed and documented consistent with ACR CT Accreditation Program Guidelines.

Quality Control Procedures	Responsible	Frequency	STATUS
	Individual		
1. Water CT Number Accuracy Eval	CT Technologist	Daily	PASS
2. Image Noise Evaluation	CT Technologist	Daily	PASS
3. Artifact Evaluation	CT Technologist	Daily	PASS
4. Visual Checklist	CT Technologist	Monthly	PASS
5. Dry Laser QC	CT Technologist	N/A	N/A
6. Acquisition Display QC	CT Technologist	Monthly	PASS

B. Preventive maintenance program is well established. Regular PMs are to be properly performed and documented by qualified field service engineers.


IMPORTANT NOTE: This Excel Workbook contains formulae essential to accurate reporting of dose for ACR CT Accreditation. It is intended to be used with both Windows and Mac operating systems. Please note, ANY alteration of the formulae will very likely result in errors of reported data, and could adversely affect our accreditation results. You must enter accurate data from this workbook into the ACRedit online testing package. Please check the results from this workbook against the results shown in the ACRedit database online testing package before submission.

Dose Calculator Spreadsheet (Exposure)	CTAP ID Number	

Radiation Dosimetry (Adult Head)

CTDI Head Phantom (16-cm diameter PMMA Phantom)	Measured	Calculated
kV	120	
mA	230	
Exposure time per rotation (s)	1	
# data channels used (N) ¹	16	
Z-axis collimation (T) ¹	0.625	
Helical (H):Table Speed (mm/rot) = (I) ¹	9.37	
Active Chamber length (mm)	100	
Chamber correction factor	1	
Center		
Measurement 1 (mR)	516.3	
Measurement 2 (mR)	515.8	
Measurement 3 (mR)	516.0	
Average of above 3 measurements (mR)		516.0
Head CTDI at isocenter in phantom (mGy)		44.9
12 o'clock position		
Measurement 1 (mR)	525.3	
Measurement 2 (mR)	525.8	
Measurement 3 (mR)	525.6	
Average of above 3 measurements (mR)		525.6
Head CTDI at 12 o'clock position in phantom (mGy)		45.7
CTDIw (mGy)		45.45
Clinical exam dose estimates (using measured CTDIw and site's Adult Head	Protocol from Table 1)
CTDIvol (mGy)	=CTDIw*N*T/I	48.50
CTDIvol reported by scanner (mGy) for the protocol entered in the phantom site	54.99	
scanning data form (using 16-cm diameter PMMA phantom)	54.99	
Percent difference between calculated CTDIvol and CTDIvol reported by scanner		-12%
Dose Notification Value (mGy) as described in XR-29 (if applicable)		
DLP (mGy-cm)	=CTDIvol*17.5	849

¹See definitions in the CT Accreditation Testing Instructions.

This document is copyright protected by the American College of Radiology. Any attempt to reproduce, copy, modify, alter or otherwise change or use this document without the express written permission of the American College of Radiology is prohibited.

IMPORTANT NOTE: This Excel Workbook contains formulae essential to accurate reporting of dose for ACR CT Accreditation. It is intended to be used with both Windows and Mac operating systems. Please note, ANY alteration of the formulae will very likely result in errors of reported data, and could adversely affect our accreditation results. You must enter accurate data from this workbook into the ACRedit online testing package. Please check the results from this workbook against the results shown in the ACRedit database online testing package before submission.

Dose Calculator Spreadsheet (Exposure)	CTAP ID Number	

Radiation Dosimetry (Adult Abdomen)

CTDI Body Phantom (32-cm diameter PMMA Phantom)	Measured	Calculated
kV	120	
mA	300	
Exposure time per rotation (s)	0.8	
# data channels used (N) ¹	16	
Z-axis collimation (T) ¹	1.25	
Helical (H):Table Speed (mm/rot) = (I) ¹	35	
Active Chamber length (mm)	100	
Chamber correction factor	1	
Center		
Measurement 1 (mR)	253.4	
Measurement 2 (mR)	253.2	
Measurement 3 (mR)	253.1	
Average of above 3 measurements (mR)		253.2
Body CTDI at isocenter in phantom (mGy)		11.0
12 o'clock position		
Measurement 1 (mR)	547.4	
Measurement 2 (mR)	519.9	
Measurement 3 (mR)	520.0	
Average of above 3 measurements (mR)		529.1
Body CTDI at12 o'clock position in phantom (mGy)		23.0
CTDIw (mGy)		19.0
Clinical exam dose estimates (using measured CTDIw and site's Adult Abdomen	Protocol from Table 1)	
CTDIvol (mGy)	=CTDIw*N*T/I	10.9
CTDIvol reported by scanner (mGy) for the protocol entered in the phantom	12.33	
site scanning data form (using 32-cm diameter PMMA phantom)	12.55	
Percent difference between calculated CTDIvol and CTDIvol reported by scanner		-12%
Dose Notification Value (mGy) as described in XR-29 (if applicable)		
DLP (mGy-cm)	=CTDIvol*25	272
SSDE for 35 cm water equivalent diameter (mGy)	=SSDE(35 cm)	11.14

¹See definitions in the CT Accreditation Testing Instructions.

PRIVILEGED and CONFIDENTIAL • PEER REVIEW

Release or disclosure of this document is prohibited in accordance with Code of Virginia 8.01-581.17

IMPORTANT NOTE: This Excel Workbook contains formulae essential to accurate reporting of dose for ACR CT Accreditation. It is intended to be used with both Windows and Mac operating systems. Please note, ANY alteration of the formulae will very likely result in errors of reported data, and could adversely affect our accreditation results. You must enter accurate data from this workbook into the ACRedit online testing package. Please check the results from this workbook against the results shown in the ACRedit database online testing package before submission.

Dose Calculator Spreadsheet (Exposure)	CTAP ID Number	

Radiation Dosimetry (Pediatric Head, 1 year old)

CTDI Head Phantom (16-cm diameter PMMA Phantom)	Measured	Calculated
kV	120	
mA	185	
Exposure time per rotation (s)	1	
# data channels used (N) ¹	8	
Z-axis collimation (T) ¹	1.25	
Helical (H):Table Speed (mm/rot) = (I) ¹	13.5	
Active Chamber length (mm)	100	
Chamber correction factor	1	
Center		
Measurement 1 (mR)	379.0	
Measurement 2 (mR)	378.5	
Measurement 3 (mR)	378.2	
Average of above 3 measurements (mR)		378.6
Head CTDI at isocenter in phantom (mGy)		32.9
12 o'clock position		
Measurement 1 (mR)	410.2	
Measurement 2 (mR)	417.9	
Measurement 3 (mR)	414.6	
Average of above 3 measurements (mR)		414.2
Head CTDI at 12 o'clock position in phantom (mGy)		36.0
CTDIw (mGy)		35.01
Clinical exam dose estimates (using measured CTDIw and site's Pediatric Head (1 year old) Protocol from Table 1)		
CTDIvol (mGy)	=CTDIw*N*T/I	25.93
CTDIvol reported by scanner (mGy) for the protocol entered in the phantom	29.98	
site scanning data form (using 16-cm diameter PMMA phantom)	29.90	
Percent difference between calculated CTDIvol and CTDIvol reported by		-14%
scanner		-1470
Dose Notification value as desciribed in XR-29 (if applicable)		
DLP (mGy-cm)	=CTDIvol*12	311

¹See definitions in the CT Accreditation Testing Instructions.

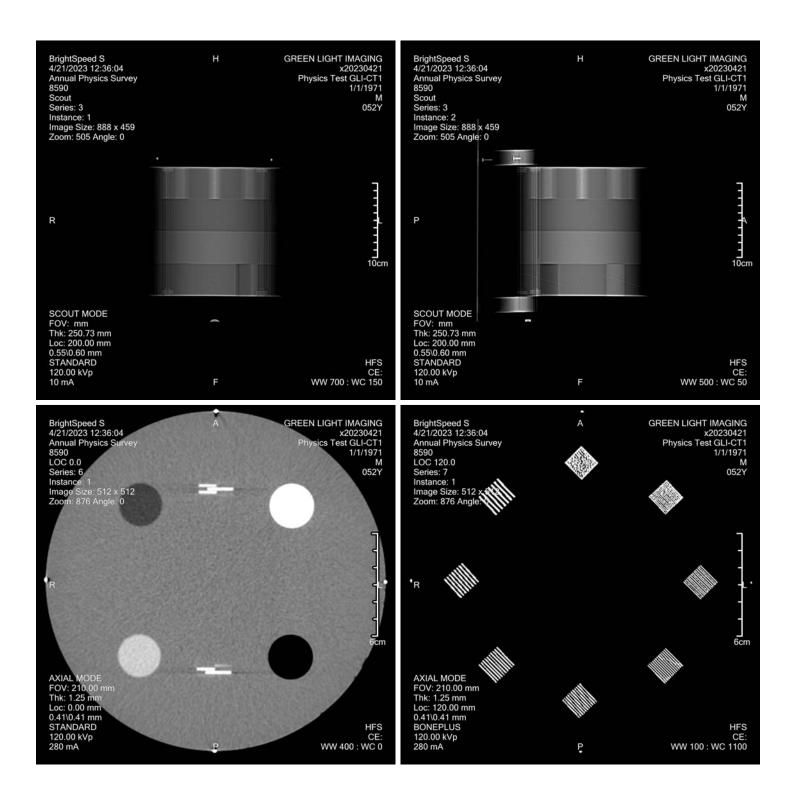
PRIVILEGED and CONFIDENTIAL • PEER REVIEW

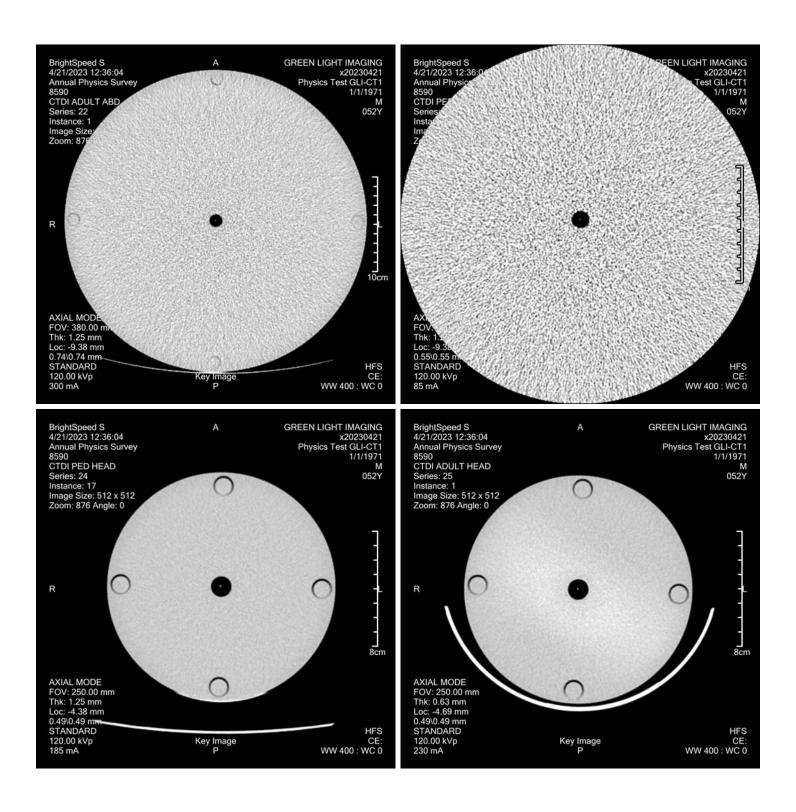
Release or disclosure of this document is prohibited in accordance with

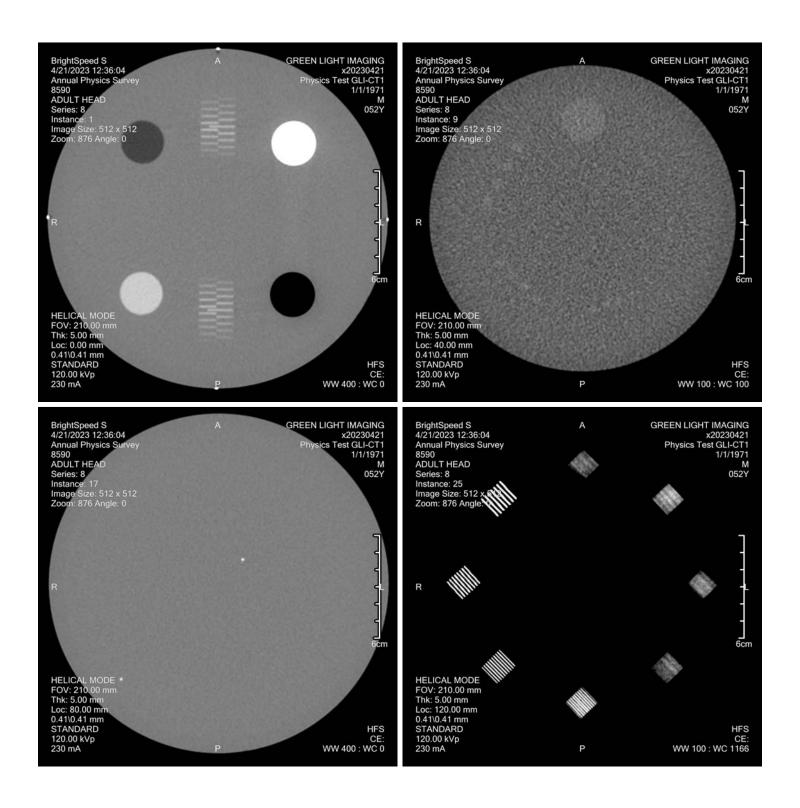
Code of Virginia 8.01-581.17

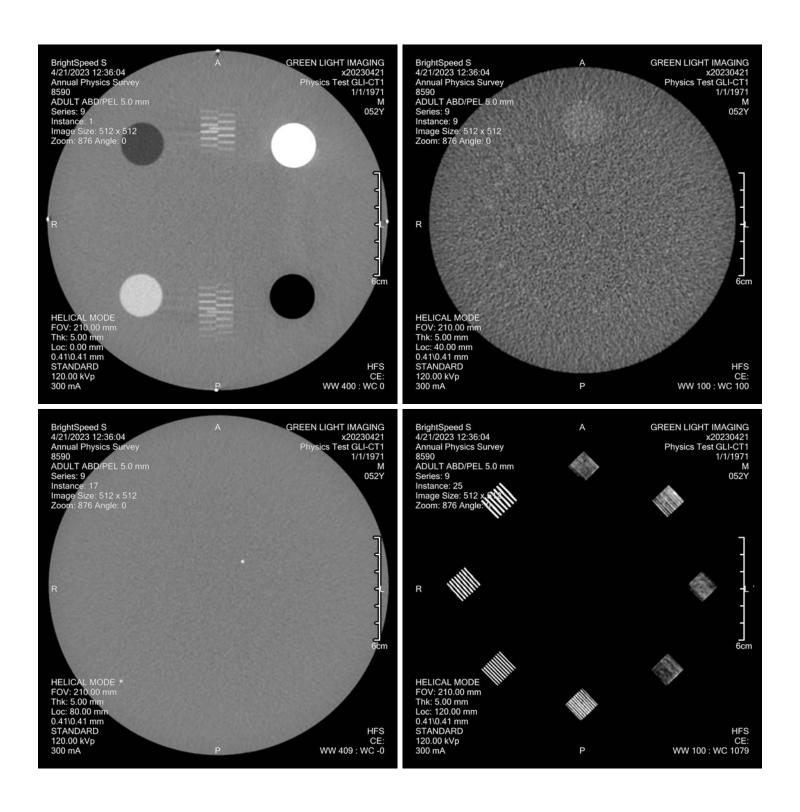
This document is copyright protected by the American College of Radiology. Any attempt to reproduce, copy, modify, alter or otherwise change or use this document without the express written permission of the American College of Radiology is prohibited.

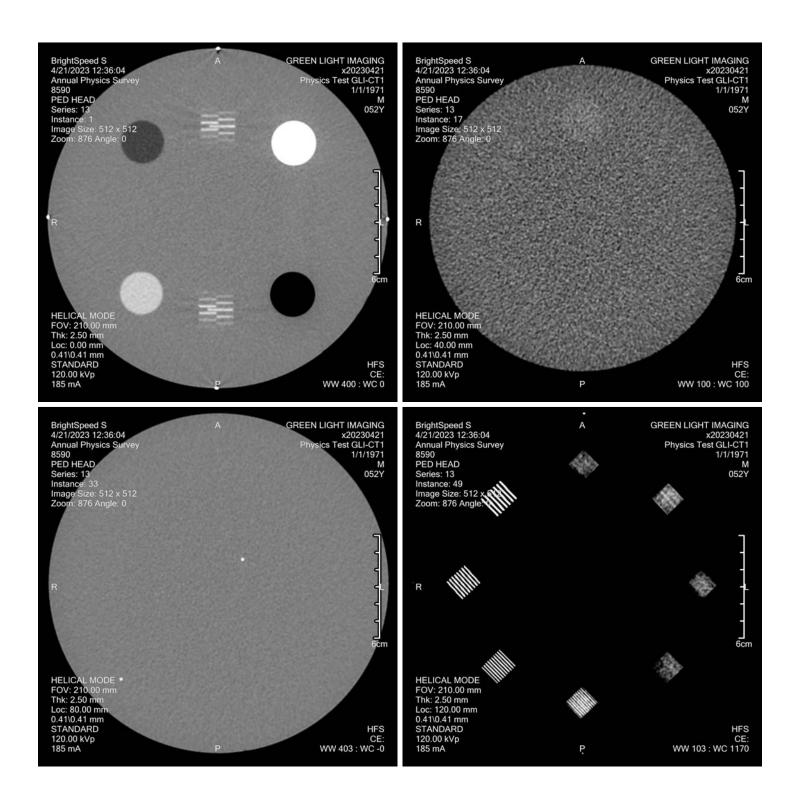
IMPORTANT NOTE: This Excel Workbook contains formulae essential to accurate reporting of dose for ACR CT Accreditation. It is intended to be used with both Windows and Mac operating systems. Please note, ANY alteration of the formulae will very likely result in errors of reported data, and could adversely affect our accreditation results. You must enter accurate data from this workbook into the ACRedit online testing package. Please check the results from this workbook against the results shown in the ACRedit database online testing package before submission.


CTAP ID Number


Radiation Dosimetry (Pediatric Abdomen, 40-50 lb)


Note: For pediatric abdomen (40-50 lb.)protocols, some CT scanners report CTDIvol using the 16 cm phantom, while others use the 32 cm phantom. The physicist should use the phantom (16 or 32 cm) that is used by the scanner to report CTDIvol.


CTDI Phantom (16 or 32 cm diameter PMMA Phantom)	Measured	Calculated
Size of phantom the scanner uses to report CTDIvol for routine pediatric	32 cm	
abdomen protocol (40-50 lb.)	420	
	120	
mA	85	
Exposure time per rotation (s)	0.8	
# data channels <i>used</i> (N) ¹	16	
Z-axis collimation (T) ¹	1.25	
Helical (H):Table Speed (mm/rot) = (I) ¹	27.5	
Active Chamber length (mm)	100	
Chamber correction factor	1	
Center		
Measurement 1 (mR)	71.53	
Measurement 2 (mR)	71.52	
Measurement 3 (mR)	71.57	
Average of above 3 measurements (mR)		71.54
Ped Body CTDI at isocenter in phantom (mGy)		3.1
12 o'clock position		
Measurement 1 (mR)	147.6	
Measurement 2 (mR)	147.4	
Measurement 3 (mR)	147.4	
Average of above 3 measurements (mR)		147.5
Ped Body CTDI at12 o'clock position in phantom (mGy)		6.4
CTDIw (mGy)		5.31
Clinical exam dose estimates (using measured CTDIw and site's Pediatric Abdol	men (40-50 lb.) Protocol	from Table 1)
CTDIvol (mGy)	=CTDIw*N*T/I	3.87
CTDIvol reported by scanner (mGy) for the protocol entered in the phantom	4.40	
site scanning data form	7.70	
Percent difference between calculated CTDIvol and CTDIvol reported by		-12%
scanner Description of the Market of the Ma		
Dose Notification Value as described in XR-29 (if applicable)		
DLP (mGy-cm)	=CTDIvol*15	58.0
SSDE for 18.5 cm water equivalent diameter (mGy)	=SSDE(18.5 cm)	7.26


¹See definitions in the CT Accreditation Testing Instructions.

